[NTDLL_WINETEST]
[reactos.git] / rostests / winetests / ntdll / rtl.c
1 /* Unit test suite for Rtl* API functions
2 *
3 * Copyright 2003 Thomas Mertes
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
18 *
19 * NOTES
20 * We use function pointers here as there is no import library for NTDLL on
21 * windows.
22 */
23
24 #include <stdlib.h>
25
26 #include "ntdll_test.h"
27
28 #ifndef __WINE_WINTERNL_H
29
30 typedef struct _RTL_HANDLE
31 {
32 struct _RTL_HANDLE * Next;
33 } RTL_HANDLE;
34
35 typedef struct _RTL_HANDLE_TABLE
36 {
37 ULONG MaxHandleCount;
38 ULONG HandleSize;
39 ULONG Unused[2];
40 PVOID NextFree;
41 PVOID FirstHandle;
42 PVOID ReservedMemory;
43 PVOID MaxHandle;
44 } RTL_HANDLE_TABLE;
45
46 #endif
47
48 /* Function ptrs for ntdll calls */
49 static HMODULE hntdll = 0;
50 static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T);
51 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
52 static NTSTATUS (WINAPI *pRtlDeleteTimer)(HANDLE, HANDLE, HANDLE);
53 static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T);
54 static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE);
55 static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG);
56 static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T);
57 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
58 static ULONG (WINAPI *pRtlUniform)(PULONG);
59 static ULONG (WINAPI *pRtlRandom)(PULONG);
60 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
61 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
62 static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT);
63 static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *);
64 static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **);
65 static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *);
66 static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *);
67 static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *);
68 static NTSTATUS (WINAPI *pRtlAllocateAndInitializeSid)(PSID_IDENTIFIER_AUTHORITY,BYTE,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,PSID*);
69 static NTSTATUS (WINAPI *pRtlFreeSid)(PSID);
70 static struct _TEB * (WINAPI *pNtCurrentTeb)(void);
71 static DWORD (WINAPI *pRtlGetThreadErrorMode)(void);
72 static NTSTATUS (WINAPI *pRtlSetThreadErrorMode)(DWORD, LPDWORD);
73 static HMODULE hkernel32 = 0;
74 static BOOL (WINAPI *pIsWow64Process)(HANDLE, PBOOL);
75 #define LEN 16
76 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */
77 static ULONG src_aligned_block[4];
78 static ULONG dest_aligned_block[32];
79 static const char *src = (const char*)src_aligned_block;
80 static char* dest = (char*)dest_aligned_block;
81
82 static void InitFunctionPtrs(void)
83 {
84 hntdll = LoadLibraryA("ntdll.dll");
85 ok(hntdll != 0, "LoadLibrary failed\n");
86 if (hntdll) {
87 pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory");
88 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
89 pRtlDeleteTimer = (void *)GetProcAddress(hntdll, "RtlDeleteTimer");
90 pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory");
91 pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory");
92 pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong");
93 pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory");
94 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
95 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
96 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
97 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
98 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
99 pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32");
100 pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable");
101 pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle");
102 pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable");
103 pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle");
104 pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle");
105 pRtlAllocateAndInitializeSid = (void *)GetProcAddress(hntdll, "RtlAllocateAndInitializeSid");
106 pRtlFreeSid = (void *)GetProcAddress(hntdll, "RtlFreeSid");
107 pNtCurrentTeb = (void *)GetProcAddress(hntdll, "NtCurrentTeb");
108 pRtlGetThreadErrorMode = (void *)GetProcAddress(hntdll, "RtlGetThreadErrorMode");
109 pRtlSetThreadErrorMode = (void *)GetProcAddress(hntdll, "RtlSetThreadErrorMode");
110 }
111 hkernel32 = LoadLibraryA("kernel32.dll");
112 ok(hkernel32 != 0, "LoadLibrary failed\n");
113 if (hkernel32) {
114 pIsWow64Process = (void *)GetProcAddress(hkernel32, "IsWow64Process");
115 }
116 strcpy((char*)src_aligned_block, src_src);
117 ok(strlen(src) == 15, "Source must be 16 bytes long!\n");
118 }
119
120 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
121 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
122
123 static void test_RtlCompareMemory(void)
124 {
125 SIZE_T size;
126
127 if (!pRtlCompareMemory)
128 {
129 win_skip("RtlCompareMemory is not available\n");
130 return;
131 }
132
133 strcpy(dest, src);
134
135 COMP(src,src,0,0);
136 COMP(src,src,LEN,LEN);
137 dest[0] = 'x';
138 COMP(src,dest,LEN,0);
139 }
140
141 static void test_RtlCompareMemoryUlong(void)
142 {
143 ULONG a[10];
144 ULONG result;
145
146 if (!pRtlCompareMemoryUlong)
147 {
148 win_skip("RtlCompareMemoryUlong is not available\n");
149 return;
150 }
151
152 a[0]= 0x0123;
153 a[1]= 0x4567;
154 a[2]= 0x89ab;
155 a[3]= 0xcdef;
156 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
157 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a, result);
158 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
159 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
160 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
161 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
162 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
163 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
164 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
165 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
166 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
167 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a, result);
168 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
169 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a, result);
170 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
171 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a, result);
172 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
173 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a, result);
174 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
175 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a, result);
176
177 a[1]= 0x0123;
178 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
179 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
180 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
181 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
182 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
183 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
184 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
185 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
186 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
187 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a, result);
188 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
189 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a, result);
190 }
191
192 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
193 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
194
195 static void test_RtlMoveMemory(void)
196 {
197 if (!pRtlMoveMemory)
198 {
199 win_skip("RtlMoveMemory is not available\n");
200 return;
201 }
202
203 /* Length should be in bytes and not rounded. Use strcmp to ensure we
204 * didn't write past the end (it checks for the final NUL left by memset)
205 */
206 COPY(0); CMP("");
207 COPY(1); CMP("T");
208 COPY(2); CMP("Th");
209 COPY(3); CMP("Thi");
210 COPY(4); CMP("This");
211 COPY(5); CMP("This ");
212 COPY(6); CMP("This i");
213 COPY(7); CMP("This is");
214 COPY(8); CMP("This is ");
215 COPY(9); CMP("This is a");
216
217 /* Overlapping */
218 strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1);
219 CMP("his is a test!!");
220 strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src));
221 CMP("TThis is a test!");
222 }
223
224 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
225
226 static void test_RtlFillMemory(void)
227 {
228 if (!pRtlFillMemory)
229 {
230 win_skip("RtlFillMemory is not available\n");
231 return;
232 }
233
234 /* Length should be in bytes and not rounded. Use strcmp to ensure we
235 * didn't write past the end (the remainder of the string should match)
236 */
237 FILL(0); CMP("This is a test!");
238 FILL(1); CMP("xhis is a test!");
239 FILL(2); CMP("xxis is a test!");
240 FILL(3); CMP("xxxs is a test!");
241 FILL(4); CMP("xxxx is a test!");
242 FILL(5); CMP("xxxxxis a test!");
243 FILL(6); CMP("xxxxxxs a test!");
244 FILL(7); CMP("xxxxxxx a test!");
245 FILL(8); CMP("xxxxxxxxa test!");
246 FILL(9); CMP("xxxxxxxxx test!");
247 }
248
249 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
250
251 static void test_RtlFillMemoryUlong(void)
252 {
253 ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
254 if (!pRtlFillMemoryUlong)
255 {
256 win_skip("RtlFillMemoryUlong is not available\n");
257 return;
258 }
259
260 /* Length should be in bytes and not rounded. Use strcmp to ensure we
261 * didn't write past the end (the remainder of the string should match)
262 */
263 LFILL(0); CMP("This is a test!");
264 LFILL(1); CMP("This is a test!");
265 LFILL(2); CMP("This is a test!");
266 LFILL(3); CMP("This is a test!");
267 LFILL(4); CMP("xxxx is a test!");
268 LFILL(5); CMP("xxxx is a test!");
269 LFILL(6); CMP("xxxx is a test!");
270 LFILL(7); CMP("xxxx is a test!");
271 LFILL(8); CMP("xxxxxxxxa test!");
272 LFILL(9); CMP("xxxxxxxxa test!");
273 }
274
275 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
276 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
277
278 static void test_RtlZeroMemory(void)
279 {
280 if (!pRtlZeroMemory)
281 {
282 win_skip("RtlZeroMemory is not available\n");
283 return;
284 }
285
286 /* Length should be in bytes and not rounded. */
287 ZERO(0); MCMP("This is a test!");
288 ZERO(1); MCMP("\0his is a test!");
289 ZERO(2); MCMP("\0\0is is a test!");
290 ZERO(3); MCMP("\0\0\0s is a test!");
291 ZERO(4); MCMP("\0\0\0\0 is a test!");
292 ZERO(5); MCMP("\0\0\0\0\0is a test!");
293 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
294 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
295 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
296 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
297 }
298
299 static void test_RtlUlonglongByteSwap(void)
300 {
301 ULONGLONG result;
302
303 if ( !pRtlUlonglongByteSwap )
304 {
305 win_skip("RtlUlonglongByteSwap is not available\n");
306 return;
307 }
308
309 if ( pRtlUlonglongByteSwap( 0 ) != 0 )
310 {
311 win_skip("Broken RtlUlonglongByteSwap in win2k\n");
312 return;
313 }
314
315 result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 );
316 ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result,
317 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n",
318 (DWORD)(result >> 32), (DWORD)result);
319 }
320
321
322 static void test_RtlUniform(void)
323 {
324 ULONGLONG num;
325 ULONG seed;
326 ULONG seed_bak;
327 ULONG expected;
328 ULONG result;
329
330 if (!pRtlUniform)
331 {
332 win_skip("RtlUniform is not available\n");
333 return;
334 }
335
336 /*
337 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
338 * algorithm. This algorithm is:
339 *
340 * seed = (seed * const_1 + const_2) % const_3;
341 *
342 * According to the documentation the random number is distributed over
343 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
344 *
345 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
346 *
347 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
348 * algorithm can be expressed without division as:
349 *
350 * seed = (seed * const_1 + const_2) & MAXLONG;
351 *
352 * To find out const_2 we just call RtlUniform with seed set to 0:
353 */
354 seed = 0;
355 expected = 0x7fffffc3;
356 result = pRtlUniform(&seed);
357 ok(result == expected,
358 "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n",
359 result, expected);
360 /*
361 * The algorithm is now:
362 *
363 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
364 *
365 * To find out const_1 we can use:
366 *
367 * const_1 = RtlUniform(1) - 0x7fffffc3;
368 *
369 * If that does not work a search loop can try all possible values of
370 * const_1 and compare to the result to RtlUniform(1).
371 * This way we find out that const_1 is 0xffffffed.
372 *
373 * For seed = 1 the const_2 is 0x7fffffc4:
374 */
375 seed = 1;
376 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
377 result = pRtlUniform(&seed);
378 ok(result == expected,
379 "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n",
380 result, expected);
381 /*
382 * For seed = 2 the const_2 is 0x7fffffc3:
383 */
384 seed = 2;
385 expected = seed * 0xffffffed + 0x7fffffc3;
386 result = pRtlUniform(&seed);
387
388 /*
389 * Windows Vista uses different algorithms, so skip the rest of the tests
390 * until that is figured out. Trace output for the failures is about 10.5 MB!
391 */
392
393 if (result == 0x7fffff9f) {
394 skip("Most likely running on Windows Vista which uses a different algorithm\n");
395 return;
396 }
397
398 ok(result == expected,
399 "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n",
400 result, expected);
401
402 /*
403 * More tests show that if seed is odd the result must be incremented by 1:
404 */
405 seed = 3;
406 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
407 result = pRtlUniform(&seed);
408 ok(result == expected,
409 "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n",
410 result, expected);
411
412 seed = 0x6bca1aa;
413 expected = seed * 0xffffffed + 0x7fffffc3;
414 result = pRtlUniform(&seed);
415 ok(result == expected,
416 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n",
417 result, expected);
418
419 seed = 0x6bca1ab;
420 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
421 result = pRtlUniform(&seed);
422 ok(result == expected,
423 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n",
424 result, expected);
425 /*
426 * When seed is 0x6bca1ac there is an exception:
427 */
428 seed = 0x6bca1ac;
429 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
430 result = pRtlUniform(&seed);
431 ok(result == expected,
432 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n",
433 result, expected);
434 /*
435 * Note that up to here const_3 is not used
436 * (the highest bit of the result is not set).
437 *
438 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
439 */
440 seed = 0x6bca1ad;
441 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
442 result = pRtlUniform(&seed);
443 ok(result == expected,
444 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n",
445 result, expected);
446
447 seed = 0x6bca1ae;
448 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
449 result = pRtlUniform(&seed);
450 ok(result == expected,
451 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n",
452 result, expected);
453 /*
454 * There are several ranges where for odd or even seed the result must be
455 * incremented by 1. You can see this ranges in the following test.
456 *
457 * For a full test use one of the following loop heads:
458 *
459 * for (num = 0; num <= 0xffffffff; num++) {
460 * seed = num;
461 * ...
462 *
463 * seed = 0;
464 * for (num = 0; num <= 0xffffffff; num++) {
465 * ...
466 */
467 seed = 0;
468 for (num = 0; num <= 100000; num++) {
469
470 expected = seed * 0xffffffed + 0x7fffffc3;
471 if (seed < 0x6bca1ac) {
472 expected = expected + (seed & 1);
473 } else if (seed == 0x6bca1ac) {
474 expected = (expected + 2) & MAXLONG;
475 } else if (seed < 0xd79435c) {
476 expected = (expected + (~seed & 1)) & MAXLONG;
477 } else if (seed < 0x1435e50b) {
478 expected = expected + (seed & 1);
479 } else if (seed < 0x1af286ba) {
480 expected = (expected + (~seed & 1)) & MAXLONG;
481 } else if (seed < 0x21af2869) {
482 expected = expected + (seed & 1);
483 } else if (seed < 0x286bca18) {
484 expected = (expected + (~seed & 1)) & MAXLONG;
485 } else if (seed < 0x2f286bc7) {
486 expected = expected + (seed & 1);
487 } else if (seed < 0x35e50d77) {
488 expected = (expected + (~seed & 1)) & MAXLONG;
489 } else if (seed < 0x3ca1af26) {
490 expected = expected + (seed & 1);
491 } else if (seed < 0x435e50d5) {
492 expected = (expected + (~seed & 1)) & MAXLONG;
493 } else if (seed < 0x4a1af284) {
494 expected = expected + (seed & 1);
495 } else if (seed < 0x50d79433) {
496 expected = (expected + (~seed & 1)) & MAXLONG;
497 } else if (seed < 0x579435e2) {
498 expected = expected + (seed & 1);
499 } else if (seed < 0x5e50d792) {
500 expected = (expected + (~seed & 1)) & MAXLONG;
501 } else if (seed < 0x650d7941) {
502 expected = expected + (seed & 1);
503 } else if (seed < 0x6bca1af0) {
504 expected = (expected + (~seed & 1)) & MAXLONG;
505 } else if (seed < 0x7286bc9f) {
506 expected = expected + (seed & 1);
507 } else if (seed < 0x79435e4e) {
508 expected = (expected + (~seed & 1)) & MAXLONG;
509 } else if (seed < 0x7ffffffd) {
510 expected = expected + (seed & 1);
511 } else if (seed < 0x86bca1ac) {
512 expected = (expected + (~seed & 1)) & MAXLONG;
513 } else if (seed == 0x86bca1ac) {
514 expected = (expected + 1) & MAXLONG;
515 } else if (seed < 0x8d79435c) {
516 expected = expected + (seed & 1);
517 } else if (seed < 0x9435e50b) {
518 expected = (expected + (~seed & 1)) & MAXLONG;
519 } else if (seed < 0x9af286ba) {
520 expected = expected + (seed & 1);
521 } else if (seed < 0xa1af2869) {
522 expected = (expected + (~seed & 1)) & MAXLONG;
523 } else if (seed < 0xa86bca18) {
524 expected = expected + (seed & 1);
525 } else if (seed < 0xaf286bc7) {
526 expected = (expected + (~seed & 1)) & MAXLONG;
527 } else if (seed == 0xaf286bc7) {
528 expected = (expected + 2) & MAXLONG;
529 } else if (seed < 0xb5e50d77) {
530 expected = expected + (seed & 1);
531 } else if (seed < 0xbca1af26) {
532 expected = (expected + (~seed & 1)) & MAXLONG;
533 } else if (seed < 0xc35e50d5) {
534 expected = expected + (seed & 1);
535 } else if (seed < 0xca1af284) {
536 expected = (expected + (~seed & 1)) & MAXLONG;
537 } else if (seed < 0xd0d79433) {
538 expected = expected + (seed & 1);
539 } else if (seed < 0xd79435e2) {
540 expected = (expected + (~seed & 1)) & MAXLONG;
541 } else if (seed < 0xde50d792) {
542 expected = expected + (seed & 1);
543 } else if (seed < 0xe50d7941) {
544 expected = (expected + (~seed & 1)) & MAXLONG;
545 } else if (seed < 0xebca1af0) {
546 expected = expected + (seed & 1);
547 } else if (seed < 0xf286bc9f) {
548 expected = (expected + (~seed & 1)) & MAXLONG;
549 } else if (seed < 0xf9435e4e) {
550 expected = expected + (seed & 1);
551 } else if (seed < 0xfffffffd) {
552 expected = (expected + (~seed & 1)) & MAXLONG;
553 } else {
554 expected = expected + (seed & 1);
555 } /* if */
556 seed_bak = seed;
557 result = pRtlUniform(&seed);
558 ok(result == expected,
559 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
560 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
561 ok(seed == expected,
562 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
563 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
564 } /* for */
565 /*
566 * Further investigation shows: In the different regions the highest bit
567 * is set or cleared when even or odd seeds need an increment by 1.
568 * This leads to a simplified algorithm:
569 *
570 * seed = seed * 0xffffffed + 0x7fffffc3;
571 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
572 * seed = (seed + 2) & MAXLONG;
573 * } else if (seed == 0x7fffffff) {
574 * seed = 0;
575 * } else if ((seed & 0x80000000) == 0) {
576 * seed = seed + (~seed & 1);
577 * } else {
578 * seed = (seed + (seed & 1)) & MAXLONG;
579 * }
580 *
581 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
582 *
583 * Now comes the funny part:
584 * It took me one weekend, to find the complicated algorithm and one day more,
585 * to find the simplified algorithm. Several weeks later I found out: The value
586 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
587 * nor with the simplified algorithm. In reality the native function and our
588 * function return a random number distributed over [0..MAXLONG-1]. Note
589 * that this is different from what native documentation states [0..MAXLONG].
590 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
591 *
592 * seed = (seed * const_1 + const_2) % MAXLONG;
593 *
594 * Further investigations show that the real algorithm is:
595 *
596 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
597 *
598 * This is checked with the test below:
599 */
600 seed = 0;
601 for (num = 0; num <= 100000; num++) {
602 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
603 seed_bak = seed;
604 result = pRtlUniform(&seed);
605 ok(result == expected,
606 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
607 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
608 ok(seed == expected,
609 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
610 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
611 } /* for */
612 /*
613 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
614 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
615 * that there is more than one cycle of generated randon numbers ...
616 */
617 }
618
619
620 static ULONG my_RtlRandom(PULONG seed)
621 {
622 static ULONG saved_value[128] =
623 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
624 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
625 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
626 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
627 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
628 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
629 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
630 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
631 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
632 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
633 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
634 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
635 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
636 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
637 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
638 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
639 ULONG rand;
640 int pos;
641 ULONG result;
642
643 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
644 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
645 pos = *seed & 0x7f;
646 result = saved_value[pos];
647 saved_value[pos] = rand;
648 return(result);
649 }
650
651
652 static void test_RtlRandom(void)
653 {
654 ULONGLONG num;
655 ULONG seed;
656 ULONG seed_bak;
657 ULONG seed_expected;
658 ULONG result;
659 ULONG result_expected;
660
661 if (!pRtlRandom)
662 {
663 win_skip("RtlRandom is not available\n");
664 return;
665 }
666
667 /*
668 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
669 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
670 * the documentation of the RtlUniform function. This algorithm is:
671 *
672 * seed = (seed * const_1 + const_2) % const_3;
673 *
674 * According to the RtlUniform documentation the random number is
675 * distributed over [0..MAXLONG], but in reality it is distributed
676 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
677 * MAXLONG:
678 *
679 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
680 *
681 * or
682 *
683 * seed = (seed * const_1 + const_2) % MAXLONG;
684 *
685 * To find out const_2 we just call RtlRandom with seed set to 0:
686 */
687 seed = 0;
688 result_expected = 0x320a1743;
689 seed_expected =0x44b;
690 result = pRtlRandom(&seed);
691
692 /*
693 * Windows Vista uses different algorithms, so skip the rest of the tests
694 * until that is figured out. Trace output for the failures is about 10.5 MB!
695 */
696
697 if (seed == 0x3fc) {
698 skip("Most likely running on Windows Vista which uses a different algorithm\n");
699 return;
700 }
701
702 ok(result == result_expected,
703 "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
704 result, result_expected);
705 ok(seed == seed_expected,
706 "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
707 seed, seed_expected);
708 /*
709 * Seed is not equal to result as with RtlUniform. To see more we
710 * call RtlRandom again with seed set to 0:
711 */
712 seed = 0;
713 result_expected = 0x7fffffc3;
714 seed_expected =0x44b;
715 result = pRtlRandom(&seed);
716 ok(result == result_expected,
717 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
718 result, result_expected);
719 ok(seed == seed_expected,
720 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
721 seed, seed_expected);
722 /*
723 * Seed is set to the same value as before but the result is different.
724 * To see more we call RtlRandom again with seed set to 0:
725 */
726 seed = 0;
727 result_expected = 0x7fffffc3;
728 seed_expected =0x44b;
729 result = pRtlRandom(&seed);
730 ok(result == result_expected,
731 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
732 result, result_expected);
733 ok(seed == seed_expected,
734 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
735 seed, seed_expected);
736 /*
737 * Seed is again set to the same value as before. This time we also
738 * have the same result as before. Interestingly the value of the
739 * result is 0x7fffffc3 which is the same value used in RtlUniform
740 * as const_2. If we do
741 *
742 * seed = 0;
743 * result = RtlUniform(&seed);
744 *
745 * we get the same result (0x7fffffc3) as with
746 *
747 * seed = 0;
748 * RtlRandom(&seed);
749 * seed = 0;
750 * result = RtlRandom(&seed);
751 *
752 * And there is another interesting thing. If we do
753 *
754 * seed = 0;
755 * RtlUniform(&seed);
756 * RtlUniform(&seed);
757 *
758 * seed is set to the value 0x44b which ist the same value that
759 *
760 * seed = 0;
761 * RtlRandom(&seed);
762 *
763 * assigns to seed. Putting these two findings together leads to
764 * the conclusion that RtlRandom saves the value in some variable,
765 * like in the following algorithm:
766 *
767 * result = saved_value;
768 * saved_value = RtlUniform(&seed);
769 * RtlUniform(&seed);
770 * return(result);
771 *
772 * Now we do further tests with seed set to 1:
773 */
774 seed = 1;
775 result_expected = 0x7a50bbc6;
776 seed_expected =0x5a1;
777 result = pRtlRandom(&seed);
778 ok(result == result_expected,
779 "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n",
780 result, result_expected);
781 ok(seed == seed_expected,
782 "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n",
783 seed, seed_expected);
784 /*
785 * If there is just one saved_value the result now would be
786 * 0x7fffffc3. From this test we can see that there is more than
787 * one saved_value, like with this algorithm:
788 *
789 * result = saved_value[pos];
790 * saved_value[pos] = RtlUniform(&seed);
791 * RtlUniform(&seed);
792 * return(result);
793 *
794 * But how is the value of pos determined? The calls to RtlUniform
795 * create a sequence of random numbers. Every second random number
796 * is put into the saved_value array and is used in some later call
797 * of RtlRandom as result. The only reasonable source to determine
798 * pos are the random numbers generated by RtlUniform which are not
799 * put into the saved_value array. This are the values of seed
800 * between the two calls of RtlUniform as in this algorithm:
801 *
802 * rand = RtlUniform(&seed);
803 * RtlUniform(&seed);
804 * pos = position(seed);
805 * result = saved_value[pos];
806 * saved_value[pos] = rand;
807 * return(result);
808 *
809 * What remains to be determined is: The size of the saved_value array,
810 * the initial values of the saved_value array and the function
811 * position(seed). These tests are not shown here.
812 * The result of these tests is: The size of the saved_value array
813 * is 128, the initial values can be seen in the my_RtlRandom
814 * function and the position(seed) function is (seed & 0x7f).
815 *
816 * For a full test of RtlRandom use one of the following loop heads:
817 *
818 * for (num = 0; num <= 0xffffffff; num++) {
819 * seed = num;
820 * ...
821 *
822 * seed = 0;
823 * for (num = 0; num <= 0xffffffff; num++) {
824 * ...
825 */
826 seed = 0;
827 for (num = 0; num <= 100000; num++) {
828 seed_bak = seed;
829 seed_expected = seed;
830 result_expected = my_RtlRandom(&seed_expected);
831 /* The following corrections are necessary because the */
832 /* previous tests changed the saved_value array */
833 if (num == 0) {
834 result_expected = 0x7fffffc3;
835 } else if (num == 81) {
836 result_expected = 0x7fffffb1;
837 } /* if */
838 result = pRtlRandom(&seed);
839 ok(result == result_expected,
840 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
841 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, result_expected);
842 ok(seed == seed_expected,
843 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
844 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, seed_expected);
845 } /* for */
846 }
847
848
849 typedef struct {
850 ACCESS_MASK GrantedAccess;
851 ACCESS_MASK DesiredAccess;
852 BOOLEAN result;
853 } all_accesses_t;
854
855 static const all_accesses_t all_accesses[] = {
856 {0xFEDCBA76, 0xFEDCBA76, 1},
857 {0x00000000, 0xFEDCBA76, 0},
858 {0xFEDCBA76, 0x00000000, 1},
859 {0x00000000, 0x00000000, 1},
860 {0xFEDCBA76, 0xFEDCBA70, 1},
861 {0xFEDCBA70, 0xFEDCBA76, 0},
862 {0xFEDCBA76, 0xFEDC8A76, 1},
863 {0xFEDC8A76, 0xFEDCBA76, 0},
864 {0xFEDCBA76, 0xC8C4B242, 1},
865 {0xC8C4B242, 0xFEDCBA76, 0},
866 };
867 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
868
869
870 static void test_RtlAreAllAccessesGranted(void)
871 {
872 unsigned int test_num;
873 BOOLEAN result;
874
875 if (!pRtlAreAllAccessesGranted)
876 {
877 win_skip("RtlAreAllAccessesGranted is not available\n");
878 return;
879 }
880
881 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
882 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
883 all_accesses[test_num].DesiredAccess);
884 ok(all_accesses[test_num].result == result,
885 "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n",
886 test_num, all_accesses[test_num].GrantedAccess,
887 all_accesses[test_num].DesiredAccess,
888 result, all_accesses[test_num].result);
889 } /* for */
890 }
891
892
893 typedef struct {
894 ACCESS_MASK GrantedAccess;
895 ACCESS_MASK DesiredAccess;
896 BOOLEAN result;
897 } any_accesses_t;
898
899 static const any_accesses_t any_accesses[] = {
900 {0xFEDCBA76, 0xFEDCBA76, 1},
901 {0x00000000, 0xFEDCBA76, 0},
902 {0xFEDCBA76, 0x00000000, 0},
903 {0x00000000, 0x00000000, 0},
904 {0xFEDCBA76, 0x01234589, 0},
905 {0x00040000, 0xFEDCBA76, 1},
906 {0x00040000, 0xFED8BA76, 0},
907 {0xFEDCBA76, 0x00040000, 1},
908 {0xFED8BA76, 0x00040000, 0},
909 };
910 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
911
912
913 static void test_RtlAreAnyAccessesGranted(void)
914 {
915 unsigned int test_num;
916 BOOLEAN result;
917
918 if (!pRtlAreAnyAccessesGranted)
919 {
920 win_skip("RtlAreAnyAccessesGranted is not available\n");
921 return;
922 }
923
924 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
925 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
926 any_accesses[test_num].DesiredAccess);
927 ok(any_accesses[test_num].result == result,
928 "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n",
929 test_num, any_accesses[test_num].GrantedAccess,
930 any_accesses[test_num].DesiredAccess,
931 result, any_accesses[test_num].result);
932 } /* for */
933 }
934
935 static void test_RtlComputeCrc32(void)
936 {
937 DWORD crc = 0;
938
939 if (!pRtlComputeCrc32)
940 {
941 win_skip("RtlComputeCrc32 is not available\n");
942 return;
943 }
944
945 crc = pRtlComputeCrc32(crc, (const BYTE *)src, LEN);
946 ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc);
947 }
948
949
950 typedef struct MY_HANDLE
951 {
952 RTL_HANDLE RtlHandle;
953 void * MyValue;
954 } MY_HANDLE;
955
956 static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle)
957 {
958 ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next);
959 *AllocatedBit = *AllocatedBit | 1;
960 }
961
962 static void test_HandleTables(void)
963 {
964 BOOLEAN result;
965 NTSTATUS status;
966 ULONG Index;
967 MY_HANDLE * MyHandle;
968 RTL_HANDLE_TABLE HandleTable;
969
970 if (!pRtlInitializeHandleTable)
971 {
972 win_skip("RtlInitializeHandleTable is not available\n");
973 return;
974 }
975
976 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable);
977 MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index);
978 ok(MyHandle != NULL, "RtlAllocateHandle failed\n");
979 RtlpMakeHandleAllocated(&MyHandle->RtlHandle);
980 MyHandle = NULL;
981 result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle);
982 ok(result, "Handle %p wasn't valid\n", MyHandle);
983 result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle);
984 ok(result, "Couldn't free handle %p\n", MyHandle);
985 status = pRtlDestroyHandleTable(&HandleTable);
986 ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08x\n", status);
987 }
988
989 static void test_RtlAllocateAndInitializeSid(void)
990 {
991 NTSTATUS ret;
992 SID_IDENTIFIER_AUTHORITY sia = {{ 1, 2, 3, 4, 5, 6 }};
993 PSID psid;
994
995 if (!pRtlAllocateAndInitializeSid)
996 {
997 win_skip("RtlAllocateAndInitializeSid is not available\n");
998 return;
999 }
1000
1001 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1002 ok(!ret, "RtlAllocateAndInitializeSid error %08x\n", ret);
1003 ret = pRtlFreeSid(psid);
1004 ok(!ret, "RtlFreeSid error %08x\n", ret);
1005
1006 /* these tests crash on XP */
1007 if (0)
1008 {
1009 ret = pRtlAllocateAndInitializeSid(NULL, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1010 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL);
1011 }
1012
1013 ret = pRtlAllocateAndInitializeSid(&sia, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1014 ok(ret == STATUS_INVALID_SID, "wrong error %08x\n", ret);
1015 }
1016
1017 static void test_RtlDeleteTimer(void)
1018 {
1019 NTSTATUS ret;
1020
1021 if (!pRtlDeleteTimer)
1022 {
1023 win_skip("RtlDeleteTimer is not available\n");
1024 return;
1025 }
1026
1027 ret = pRtlDeleteTimer(NULL, NULL, NULL);
1028 ok(ret == STATUS_INVALID_PARAMETER_1 ||
1029 ret == STATUS_INVALID_PARAMETER, /* W2K */
1030 "expected STATUS_INVALID_PARAMETER_1 or STATUS_INVALID_PARAMETER, got %x\n", ret);
1031 }
1032
1033 static void test_RtlThreadErrorMode(void)
1034 {
1035 DWORD oldmode;
1036 BOOL is_wow64;
1037 DWORD mode;
1038 NTSTATUS status;
1039
1040 if (!pRtlGetThreadErrorMode || !pRtlSetThreadErrorMode)
1041 {
1042 win_skip("RtlGetThreadErrorMode and/or RtlSetThreadErrorMode not available\n");
1043 return;
1044 }
1045
1046 if (!pIsWow64Process || !pIsWow64Process(GetCurrentProcess(), &is_wow64))
1047 is_wow64 = FALSE;
1048
1049 oldmode = pRtlGetThreadErrorMode();
1050
1051 status = pRtlSetThreadErrorMode(0x70, &mode);
1052 ok(status == STATUS_SUCCESS ||
1053 status == STATUS_WAIT_1, /* Vista */
1054 "RtlSetThreadErrorMode failed with error 0x%08x\n", status);
1055 ok(mode == oldmode,
1056 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1057 mode, oldmode);
1058 ok(pRtlGetThreadErrorMode() == 0x70,
1059 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode, 0x70);
1060 if (!is_wow64 && pNtCurrentTeb)
1061 ok(pNtCurrentTeb()->HardErrorDisabled == 0x70,
1062 "The TEB contains 0x%x, expected 0x%x\n",
1063 pNtCurrentTeb()->HardErrorDisabled, 0x70);
1064
1065 status = pRtlSetThreadErrorMode(0, &mode);
1066 ok(status == STATUS_SUCCESS ||
1067 status == STATUS_WAIT_1, /* Vista */
1068 "RtlSetThreadErrorMode failed with error 0x%08x\n", status);
1069 ok(mode == 0x70,
1070 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1071 mode, 0x70);
1072 ok(pRtlGetThreadErrorMode() == 0,
1073 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode, 0);
1074 if (!is_wow64 && pNtCurrentTeb)
1075 ok(pNtCurrentTeb()->HardErrorDisabled == 0,
1076 "The TEB contains 0x%x, expected 0x%x\n",
1077 pNtCurrentTeb()->HardErrorDisabled, 0);
1078
1079 for (mode = 1; mode; mode <<= 1)
1080 {
1081 status = pRtlSetThreadErrorMode(mode, NULL);
1082 if (mode & 0x70)
1083 ok(status == STATUS_SUCCESS ||
1084 status == STATUS_WAIT_1, /* Vista */
1085 "RtlSetThreadErrorMode(%x,NULL) failed with error 0x%08x\n",
1086 mode, status);
1087 else
1088 ok(status == STATUS_INVALID_PARAMETER_1,
1089 "RtlSetThreadErrorMode(%x,NULL) returns 0x%08x, "
1090 "expected STATUS_INVALID_PARAMETER_1\n",
1091 mode, status);
1092 }
1093
1094 pRtlSetThreadErrorMode(oldmode, NULL);
1095 }
1096
1097 START_TEST(rtl)
1098 {
1099 InitFunctionPtrs();
1100
1101 test_RtlCompareMemory();
1102 test_RtlCompareMemoryUlong();
1103 test_RtlMoveMemory();
1104 test_RtlFillMemory();
1105 test_RtlFillMemoryUlong();
1106 test_RtlZeroMemory();
1107 test_RtlUlonglongByteSwap();
1108 test_RtlUniform();
1109 test_RtlRandom();
1110 test_RtlAreAllAccessesGranted();
1111 test_RtlAreAnyAccessesGranted();
1112 test_RtlComputeCrc32();
1113 test_HandleTables();
1114 test_RtlAllocateAndInitializeSid();
1115 test_RtlDeleteTimer();
1116 test_RtlThreadErrorMode();
1117 }